Experimental re-implementation of core functionality with the aim:
- Depend only on the Python Standard Library for core
- If modules are missing elsewhere, *never* throw
- Unit test *everything*
- Cleaner and more minimal implementation
- Better integration points for existing implementations (charts,
braille, etc.)
- Full backwards-compatibility with existing module system (except where
modules can be vastly simplified)
Seems like subprocess and friends (Popen, communicate) are not so easy
to mock cleanly. Therefore, start from scratch and carefully write test
by test, until (at least) the old test coverage has been restored.
Make the format string of the datetime module configurable using the new
parameter() method in the module.
Also, restructured the setting of the config information a bit so that
the parameter() method can be used in the constructor of a module.
see #23
User can now use -p <key>=<value> to pass configuration parameters to
modules. For this, the module gets a "parameter()" method. Parameter
keys are in the format <name>.<key> where <name> is the name of the
loaded module. This is either the name of the module itself (e.g. "cpu")
or its alias, if the user specified it, for example:
bumblebee-status -m cpu -p cpu.warning=90
vs.
bumblebee-status -m cpu:test -p test.warning=90
see #23
Until now, widgets were re-created during each iteration. For multiple,
reasons, using static widget objects is much easier, so instead of
creating new widgets continuously, modules now create the widgets during
instantiation and get the list of widgets passed as parameter whenever
an update occurs. During the update, they can still manipulate the
widget list by removing and adding elements as needed.
Advantages:
* Less memory fragmentation (fewer (de)allocations)
* Easier event management (widgets now have static IDs)
* Easier module code (widget contents can simply be the result of a
callback)
see #23