racket solutions for problems 6 7 and 8

This commit is contained in:
Lowl3v3l 2017-05-09 20:57:45 +02:00
parent 14379b035f
commit 04a8190ccb
3 changed files with 57 additions and 0 deletions

4
6/euler6.rkt Normal file
View file

@ -0,0 +1,4 @@
#lang racket
(- (* (apply + (range 1 101)) (apply + (range 1 101)))
(foldl + 0 (map (λ (x) (* x x)) (range 1 101))))

12
7/euler7.rkt Normal file
View file

@ -0,0 +1,12 @@
#lang racket
(require math/number-theory)
(define (nth-prime it n primes)
(if (equal? n (length primes))
(car primes)
(if (prime? it)
(nth-prime (+ it 2) n (cons it primes))
(nth-prime (+ it 2) n primes))))
(nth-prime 3 10001 (list 2))

41
8/euler8.rkt Normal file
View file

@ -0,0 +1,41 @@
#lang racket
(define num
(map (λ (x) (- (char->integer x) 48))
(string->list
(string-replace
"73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450" "\n" ""))))
(define pivot 0)
(define (find-max-product n)
(if (< (length n) 13)
pivot
(if (> (apply * (take n 13)) pivot)
(begin
(set! pivot (apply * (take n 13)))
(find-max-product (cdr n)))
(find-max-product (cdr n)))))
(find-max-product num)