From 852c77d428c86e55f71e9734fede6ac684320096 Mon Sep 17 00:00:00 2001 From: ikselven Date: Tue, 25 Apr 2017 22:57:51 +0200 Subject: [PATCH] erlang and simple R implementation of project euler problem 87 --- 2017-04-11/ikselven_euler87.R | 22 +++++++++++++++++++++ 2017-04-11/joe_euler87.erl | 36 +++++++++++++++++++++++++++++++++++ 2 files changed, 58 insertions(+) create mode 100644 2017-04-11/ikselven_euler87.R create mode 100644 2017-04-11/joe_euler87.erl diff --git a/2017-04-11/ikselven_euler87.R b/2017-04-11/ikselven_euler87.R new file mode 100644 index 0000000..3408ff8 --- /dev/null +++ b/2017-04-11/ikselven_euler87.R @@ -0,0 +1,22 @@ +library(numbers) +MAX <- 5e7 +primes <- Primes(1, ceiling(sqrt(MAX))) + +potfilter <- function(numbers, filter) + numbers[numbers < filter] + +sums <- sapply( + potfilter(primes^4, MAX), + function(x) { + sapply( + potfilter(primes^3, MAX), + function(y) { + sapply(primes^2, function(z) { + x+y+z + }) + } + ) + } +) + +length(unique(sums[sums + Max = 50000000, + Primes = sieve(Max), + Sums = find_pow234(Max, Primes), + length(Sums). + +%%% find all solutions for X^2+Y^3+Z^4 smaller Max +find_pow234(Max, Primes) -> + XPrimes = lists:takewhile(fun(P) -> pow2(P) < Max end, Primes), + YPrimes = lists:takewhile(fun(P) -> pow3(P) < Max end, Primes), + ZPrimes = lists:takewhile(fun(P) -> pow4(P) < Max end, Primes), + lists:usort(lists:filter( + fun(Num) -> Num < Max end, + [powsum234(A, B, C) || A<-XPrimes, B<-YPrimes, C<-ZPrimes])). + +%%% generate a list of all primes smaller Max +sieve(Max) -> + Until = trunc(math:sqrt(Max)), + sieve([], 2, 3, Until). + +sieve(Primes, LastPrime, N, Until) when (N > Until) -> + lists:append(Primes, [LastPrime]); +sieve(Primes, LastPrime, N, Until) -> + case lists:all(fun(P) -> (N rem P)=/=0 end, Primes) of + true -> sieve(lists:append(Primes, [LastPrime]), N, N+2, Until); + false -> sieve(Primes, LastPrime, N+2, Until) + end. + +%%% helper functions +powsum234(X, Y, Z) -> pow2(X) + pow3(Y) + pow4(Z). +pow2(X) -> X*X. +pow3(X) -> X*X*X. +pow4(X) -> X*X*X*X.