really too simple colour detection of chocolate drops
really too simple colour detection of chocolate drops. only an example!!!
This commit is contained in:
commit
42d8ac02a8
2 changed files with 70 additions and 0 deletions
70
main.py
Normal file
70
main.py
Normal file
|
@ -0,0 +1,70 @@
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pylab as plt
|
||||||
|
im = Image.open("sample/IMG_8217.jpg")
|
||||||
|
|
||||||
|
print(im)
|
||||||
|
|
||||||
|
im2arr = np.array(im) # im2arr.shape: height x width x channel
|
||||||
|
arr2im = Image.fromarray(im2arr)
|
||||||
|
|
||||||
|
plt.imshow(im2arr)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
print(np.min(im2arr[:,:,2]), np.max(im2arr[:,:,2]))
|
||||||
|
|
||||||
|
# substract the minimal colour intensity from each pixel.
|
||||||
|
# here, but not done yet
|
||||||
|
|
||||||
|
x = 860
|
||||||
|
y = 250
|
||||||
|
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
green_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
|
||||||
|
green_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
|
||||||
|
green_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
|
||||||
|
|
||||||
|
print("green", green_r, green_g, green_b)
|
||||||
|
|
||||||
|
|
||||||
|
x = 2070
|
||||||
|
y = 250
|
||||||
|
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
blue_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
|
||||||
|
blue_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
|
||||||
|
blue_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
|
||||||
|
|
||||||
|
print("blue", blue_r, blue_g, blue_b)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
x = 800
|
||||||
|
y = 1020
|
||||||
|
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
brown_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
|
||||||
|
brown_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
|
||||||
|
brown_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
|
||||||
|
|
||||||
|
print("brown", brown_r, brown_g, brown_b)
|
||||||
|
|
||||||
|
plt.plot([brown_r, brown_g, brown_b])
|
||||||
|
plt.plot([blue_r, blue_g, blue_b])
|
||||||
|
plt.plot([green_r, green_g, green_b])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
for i in range(len(im2arr)):
|
||||||
|
for j in range(len(im2arr[i])):
|
||||||
|
if im2arr[i][j][0] > brown_r - 30 and im2arr[i][j][0] < brown_r + 30 and im2arr[i][j][1] > brown_g - 30 and im2arr[i][j][1] < brown_g + 30 and im2arr[i][j][2] > brown_b - 30 and im2arr[i][j][2] < brown_b + 30:
|
||||||
|
print(i,j, "brown")
|
||||||
|
im2arr[i, j, 0] = 0
|
||||||
|
im2arr[i, j, 1] = 0
|
||||||
|
im2arr[i, j, 2] = 0
|
||||||
|
|
||||||
|
plt.imshow(im2arr)
|
||||||
|
plt.show()
|
BIN
sample/IMG_8217.JPG
Normal file
BIN
sample/IMG_8217.JPG
Normal file
Binary file not shown.
After Width: | Height: | Size: 279 KiB |
Reference in a new issue