Refactored nodemcu/statusclient

- Fix init_wifi: removed `ESP8266WiFiMulti`; replaced with simple
  wifi ap connection
- Fix send_status: refactored return type into `bool`
- Fix send_status: optimized if-branch for calculation of `status` into
  array access
- Fix send_status: removed `client.connected()` => `client.connect(...)`
  is enough
- Fix: renamed `reed` into `read`
- Cleanup: changed int variables into uint8_t
- Cleanup: moved static data (`ca_certs`, `client_cert/key` into global
  data
- Style: changed typedef enum into scoped enum (enum class decl)
- Style: changed int const definitions into anonymous enum constants
- Style: reorderd headers alphabetically
This commit is contained in:
Ludwig Behm 2023-10-24 01:08:04 +02:00
parent c2fd6ec7b0
commit 78e31e52a1
Signed by untrusted user: l.behm
GPG key ID: D344835D63B89384

View file

@ -1,31 +1,46 @@
/* /*
* file: statusclient.ino * file: statusclient.ino
* desc: This file is part of the Krautspace Doorstatus project. It's the * desc: This file is part of the Krautspace Doorstatus project. It's the
* main file for a client, who deals with the input from a reed sensor and * main file for a client, who deals with the input from a read sensor and
* push these values to a server. The code is make to run on a NodeMCU with * push these values to a server. The code is make to run on a NodeMCU with
* ESP8266 chip. * ESP8266 chip.
*/ */
#include <ESP8266WiFiMulti.h>
#include <WiFiClientSecure.h>
#include <time.h> #include <time.h>
#include <ESP8266WiFi.h>
#include <WiFiClientSecure.h>
#include "config.h"
#include "certs.h" #include "certs.h"
#include "config.h"
#include "credentials.h" #include "credentials.h"
const int LED_PIN = 16; // D0 // cpp23 utility
const int REED_PIN = 5; // D1 namespace cpp23 {
template <typename Enum>
constexpr std::underlying_type_t<Enum> to_underlying(Enum e) noexcept { return static_cast<std::underlying_type_t<Enum>>(e);}
}
typedef enum { // defining some constants
DOOR_CLOSED = 0, enum : int {
DOOR_OPEN = 1 LED_PIN = 16, // D0
} door_state; READ_PIN = 5 // D1
door_state current_door_state = DOOR_CLOSED; };
BearSSL::WiFiClientSecure client; enum class door_state {
closed = 0,
open = 1
};
void blink_led(int blink_count, int delay_time) { // defining some globals
static inline door_state current_door_state = door_state::closed;
constexpr static inline std::array<char const[2], 2> state_str {{"0", "1"}};
// initializing
static inline BearSSL::X509List const ca_certs { CA_CERTS };
static inline BearSSL::X509List const client_cert { CLIENT_CERT };
static inline BearSSL::PrivateKey const client_key { CLIENT_KEY };
void blink_led(uint8_t blink_count, uint8_t delay_time) {
/* /*
* zur ausgabe von meldungen blinkt die interne led. * zur ausgabe von meldungen blinkt die interne led.
* erfolgreichesmeldungen werden durch kurze blinkzeichen angezeigt, * erfolgreichesmeldungen werden durch kurze blinkzeichen angezeigt,
@ -39,7 +54,7 @@ void blink_led(int blink_count, int delay_time) {
* param 1: integer * param 1: integer
* param 2: integer * param 2: integer
*/ */
for(int i=0; i!= blink_count; ++i) { for (; blink_count; --blink_count) {
digitalWrite(LED_PIN, LOW); digitalWrite(LED_PIN, LOW);
delay(delay_time); delay(delay_time);
digitalWrite(LED_PIN, HIGH); digitalWrite(LED_PIN, HIGH);
@ -53,58 +68,45 @@ void init_serial() {
*/ */
Serial.begin(BAUD_RATE); Serial.begin(BAUD_RATE);
Serial.setDebugOutput(DEBUG); Serial.setDebugOutput(DEBUG);
Serial.println(); Serial.println("\n[Srl] Serial interface initialized");
Serial.println("[Srl] Serial interface initialized");
} }
void init_pins() { void init_pins() {
/* /*
* set gpio for reed sensor and led * set gpio for read sensor and led
*/ */
pinMode(REED_PIN, INPUT_PULLUP); pinMode(READ_PIN, INPUT_PULLUP);
pinMode(LED_PIN, OUTPUT); pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH); digitalWrite(LED_PIN, HIGH);
Serial.println("[Pin] LED and REED initialized"); Serial.println("[Pin] LED and READ initialized");
} }
void init_wifi() { void init_wifi() {
/* WiFi.begin(SSID, PSK);
* Creates the ssl context. Turns wifi off and than into Serial.println("[WiFi] Wifi initialized");
* access point mode.
* TODO: is 'turn of' needed! while (WiFi.status() != WL_CONNECTED) {
*/ Serial.println("[WiFi] Error: Failed to connect");
ESP8266WiFiMulti wifi;
WiFi.mode(WIFI_OFF);
WiFi.mode(WIFI_STA);
wifi.addAP(SSID_1, PSK_1);
wifi.addAP(SSID_2, NULL);
Serial.println("[Wifi] Wifi initialized");
wifi.run();
if (WiFi.status() == WL_CONNECTED) {
Serial.print("[Wif] Connected to ");
Serial.println(WiFi.SSID());
Serial.print("[Wifi] IP: ");
Serial.println(WiFi.localIP());
set_clock();
} else {
Serial.println("[Wifi] Error: Failed to connect");
blink_led(3, 500); blink_led(3, 500);
} }
Serial.printf("[WiFi] Connected to %s\n", WiFi.SSID());
Serial.print("[WiFi] IP: ");
Serial.println(WiFi.localIP());
set_clock();
} }
door_state read_door_state() { door_state read_door_state() {
/* /*
* die initialisierung des reed-pin mit pullup bewirkt, daß am pin * die initialisierung des read-pin mit pullup bewirkt, daß am pin
* 3,3 volt anliegen. die verbindung des pins mit GND sorgt dafür, * 3,3 volt anliegen. die verbindung des pins mit GND sorgt dafür,
* daß die spannung "abfließen" kann. dadurch hat der pin dann den * daß die spannung "abfließen" kann. dadurch hat der pin dann den
* status 'low'. * status 'low'.
* geschlossene tür -> reed geschlossen -> low * geschlossene tür -> read geschlossen -> low
* geöffnete tür -> reed offen -> high * geöffnete tür -> read offen -> high
*/ */
if (digitalRead(REED_PIN) == HIGH) { return (digitalRead(READ_PIN) == HIGH) ? door_state::open : door_state::closed;
return DOOR_OPEN;
}
return DOOR_CLOSED;
} }
void set_clock() { void set_clock() {
@ -115,58 +117,45 @@ void set_clock() {
Serial.print("[Clock] Waiting for NTP time sync"); Serial.print("[Clock] Waiting for NTP time sync");
time_t now = time(nullptr); time_t now = time(nullptr);
while (now < 8 * 3600 * 2) { for (; now < 16 * 3600; now = time(nullptr)) { // 16 hours
delay(500); delay(500);
Serial.print("."); Serial.print(".");
now = time(nullptr);
} }
Serial.println(""); Serial.println("");
struct tm timeinfo; struct tm timeinfo;
gmtime_r(&now, &timeinfo); gmtime_r(&now, &timeinfo);
Serial.print("[Clock] Current time: "); Serial.printf("[Clock] Current time: %s\n", asctime(&timeinfo));
Serial.println(asctime(&timeinfo));
} }
int send_status(door_state state) { bool send_status(door_state state) {
/* /*
* Inits wifi (if needed) and send the status * Inits wifi (if needed) and send the status
*/ */
char status[2] = ""; char const* const status = state_str[cpp23::to_underlying(state)];
if (state == DOOR_CLOSED) { BearSSL::WiFiClientSecure client;
strncpy(status, "0", 1); client.setTrustAnchors(&ca_certs);
} else if (state == DOOR_OPEN) {
strncpy(status, "1", 1);
} else {
return 1;
}
BearSSL::X509List server_cert(SERVER_CERT);
BearSSL::X509List client_cert(CLIENT_CERT);
BearSSL::PrivateKey client_key(CLIENT_KEY);
client.setTrustAnchors(&server_cert);
client.setClientRSACert(&client_cert, &client_key); client.setClientRSACert(&client_cert, &client_key);
Serial.println("[Ctx] SSL Context initialized"); Serial.println("[Ctx] SSL Context initialized");
Serial.printf("[Send] Connect to %s:%i\n", SERVER_URL, SERVER_PORT); Serial.printf("[Send] Connect to %s:%i\n", SERVER_URL, SERVER_PORT);
client.connect(SERVER_URL, SERVER_PORT);
if (!client.connected()) { if (!client.connect(SERVER_URL, SERVER_PORT)) {
Serial.println("[Send] Can't connect to server"); Serial.println("[Send] Can't connect to server");
Serial.print("[Send] SSL Error: "); Serial.printf("[Send] SSL Error: %d\n", client.getLastSSLError());
Serial.println(client.getLastSSLError());
client.stop();
return 1;
} else {
ESP.resetFreeContStack();
uint32_t freeStackStart = ESP.getFreeContStack();
Serial.println("[Send] Connection successful established");
Serial.printf("[Send] Send status: %s\n", status);
client.write(status);
client.stop(); client.stop();
return false;
} }
return 0;
}
// ESP.resetFreeContStack();
// uint32_t freeStackStart = ESP.getFreeContStack();
Serial.println("[Send] Connection successful established");
Serial.printf("[Send] Send status: %s\n", status);
client.write(status);
client.stop();
return true;
}
void setup() { void setup() {
@ -187,12 +176,13 @@ void loop() {
if (new_door_state != current_door_state) { if (new_door_state != current_door_state) {
Serial.printf("[Loop] Status has changed to %i\n", new_door_state); Serial.printf("[Loop] Status has changed to %i\n", new_door_state);
blink_led(2, 100); blink_led(2, 100);
if (send_status(new_door_state) == 0) { if (send_status(new_door_state)) {
current_door_state = new_door_state; current_door_state = new_door_state;
blink_led(5, 100); blink_led(5, 100);
} else { } else {
blink_led(5, 500); blink_led(5, 500);
} }
} }
delay(FREQUENCY); delay(FREQUENCY);
} }